
r

4k

I

SPACE SCIENCES LABORATORY

N65-34461
I (ACCESSION NUMBER)

(THRU)

.1 (PAGES) (CODE)

: C I_ & -?/_oi9 0
(NASA CR OR TMX OR AD NUMBER) (CAT£GO

UNIVERSITY _ CALIFORNIA

" BERKEL__IFORNIA ,

,, _'_ GPO PRICE $

CFSTI PRICE(S) $

Hard copy (HC)

Microfiche (MF)

f-<

ff 653 July 65

https://ntrs.nasa.gov/search.jsp?R=19650024860 2019-05-01T04:07:08+00:00Z



Space Sciences Laboratory

University of California

Berkeley, California

A THEORETICAL AND EXPERIMENTAL STUDY

OF THE MECHANICAL _HAVIOR OF THE CORNEA WITH

APPLICATIC_ TO THE MEASUREMENT OF

_TRAOCUIAR PRESSURE

Nathan Jay Schwartz

Series No. 6, Issue No. 31

Sis work was supported by NASA Grant NsG 600

28, 1965



SUHHARY

A theoretical and experlmental study was made of the n_chanicai behavior

of the cornea. The theoretical analysis Included an analytical solution for the

symmetrical constraint of a thin, shallow, spherical shell by a rigid indenter.

The experlmental study Investigated the rheo|ogy of the cornea wlth particular

emphasis on Its compliance with the requirements of the Boltzmann superposltion

principle. Representative results of tests on twenty enucleated hog eyes and two

human eyes have been reported.

The corneas of the human and hog eyes behaved as |inear viscoelastic so|lds;

the human eyes differed from the hog eyes In having a long tern creep component,

Several eyes were tested at the slte of procurement, slx to seven minutes after

the animalms death, and It was established that creep is not an artlfact due to

aging or enucleation.

The analytical and experimental results were combined to study some Instruments

used to detect the level of pressure in the eye. The theoretical analysis predicted

that a tYPe of elastic Instabl]ity occurs during the process of flattening a small

portion of the cornea; this Is discussed with reference to the Goldmann and Hackay-

Harg tonometers. The role of cornea] creep was considered with reference to the

response of the Schi_tz Indentation tonometer during the time dependent process known

as tonography. _wO-c_
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The nature of this study of the measurement of Intraocular pressure leads

to a three-fold presentation. We first give an analytlcal solution for the

symmetrical constraint of a thin elastic shell by a rigid Indenter, In the

next chapter we record our experimental investigation of the theology of the

cornea. And then, in chapter three, the analytical and experimental results

are combined to study some problems of tonometry and tonography.

Consequently, chapter one begins with an Introduction to the analytical

work, and the Introduction to the second chapter addresses itself to the experi-

mental study. In the introduction to chapter three, we orient the previous

results toward the glaucoma problem; therein we discuss the limitations of

applying our results which are based on the linear theory of elasticity to the

analysis of various Instruments employed to measure intraocular pressure.

Although the basic analytical fomulation is contained in chapter one,

the problem of tonography requlres an extension of these results. And In order

to gain a slight Insight into that problem, In Ghapter 3 we extend tim

previous results to Include the rising lntraocular pressure (due to the applied

load][, the fluld outflow and some heuristic remarks based on the linear theory

of visco-elast iclty.

Ii



TABLE OF _ONTENT$

Preface

1. An Analytical Investlgatlon of the deformation of
a Shallow Spherical Shell By a RIgld Indenter

I.I Introduction ..... ......................................,.......... 1

1.2 Reference Equations and Some Preliminary Results .................. 4

1.3 The Fomulation of the Boundary Value Problem ..................... 13

1.4 Tke Homogeneous Solution of the Equations Governing
the Boundary Value Problem ..,.,..,..,,..,..,.,.,.,,,,,...,,,,..,,, 15

1.5 The Solution for a Point Load at the Apex ......................... 19

1.6 The Symmetrical Constraint of a Shallow Spherical Shell
With No Edge Restralnt ....°.... ..... ..,,......,.,..,...,...,,,.... 25

1.7 Discussion of the Results for a Flat Indenter ..................... 30

Appendix I A The Evaluation of _p ..................................... 31
I B The Evaluation of the Resultant Stresses

and Couples ........°....,,,.°°°..........°..,,..,°.,...,. 32
I C The Evaluation of the Integrals of 1.6 ,.,,°..,.°...,°..,. 34

° An Experimental Study of the Rheology of the
cornea In- Vitro

2.1 Introduction ............... ..... • .... .,,,.......................°. 36

2,2 Results From the Linear Theory of Vlscoelastlcity ......,.,.......° 38

2.3 The Description of the Experlmental Equipment .,.,,...,,.....,..... 40

2.4 Experimental Procedure ,...,,...,,,....,..,,-,.,,,-.,, .... ..,,.,.°. 43

2.5 Discussion of the Creep Tests .,,.....,..,.,.,,........,....,..,,.. 45

° Tonometry and Tonograpby

3.1 Introduction ....,,......,......,..,...,...,.............,..,,...,. 47

3.2 The Anatomy of the Eye, The GlaurJxu Problem ...,,,...,......,.,,. 48



3.3 A Structural Hodel of the Eye ................................... 49

3,4 Applanation Tonometry ,,.,o..,,,,,,,,,,,,.,,,,,,,,,,,,,,. .... ,,.. 5it

3,_A The Goidmann Tonometer .,.°,,,.,. .... ,.,,,,.,,.,,,.,, .... .. .... ., 56

3.4B The IMckay-Harg Tonometer .,..°,,,..,,.,..,..,..,..,,,.,,..,,... 59

3.5 Indentation Tonometers .,..,.,. ....... ,,. ...... .,...,.,..,..,,,. 65

Acknowledgement o.,.,..,.,,,,.°,o,.,.,,. ..... ..,.°.,,.,,.,o°....°.....,..- 73

References ...... .... ............................... .... ............-....- 7_

Figures ...°. ...... ° .... °.....°..,,°...,°..°..,,,..°,,...°...°...°.°,..°.. 77-108



CHAPTER O_IE

"An Analytical Investigation of the Deformation of a Shallow
Spherical Shell by a Rigid Indenter"

1. ]. /ntroduct ion

The contact problem in elasticity is a boundary value problem of mixed

type. Over a reglon, whose boundary is not a-priori known, displacements

are specified; outside this region one specifles stresses. The solution must

determine the stresses and displacements throughout the body as we] ! as the

boundary between the loaded and unloaded portions of the surface.

A classical example of this type problem is Hertz I Ill _ solution for

the contact of two solid, elastlc spheres. In this investigation we are con-

cerned with the syn_etrical indentation of a shallow, spherical shell by a

rigid constraint. The shell is assumed to have no edge restraint,

In l_2, Essenberg [2] considered the problem of a plate whose upper

surface is partially constrained by a rigid, parabaloidai indenter. He found

It necessary to employ the E. Relssner [3J plate theory (which extends the

classical theory by considering the effect of transverse shear deformation)

since the classical plate theory predicts the following unsatisfactory result:

If a plate is loaded only from above by a rigid indenter whose contour is a

bl-harmonlc function, then the pressure between the plate and the constraint

is zero; equilibrium is maintained by a discontinuous resultant shear stress.

Essenberg was able to obtain a physical|y consistent representation

for the pressure; he also noted the dlvergence of the improved and classlcal

* Numbers in brackets refer to references given at the end.
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theories even for very thin plates. He showed that if the surface traction

is a quantity of Interest, It Is necessary to employ the Improved theory.

In 19/46, E. Relssner [/4_ developed a theory to describe, from the stand-

point of classical shell-theory, the stresses and small displacements in

shail_ spherical shells. In 1955 Raghdi {7_ extended these results to include

the effect of transverse shear deformation and normal stress in the stress-

strain equations In the shell space.

For the problem that _e are considering, the shallow spherlcal shell

constrained by a rigid indenter, the result afforded by classical shell theory

(under the Love-Kirchoff hypothesis [8_ ) and the shallow shell approximation

is unsatisfactory. For constraint by any smoothly shaped indenter, classical

theory predicts that the pressure between the shell and the constraining sur-

face is negative, i.e., the shell does not contact the constraint. Equilibrium

is maintained by the discontinuous resultant shear stress at the edge of the

loaded region.

In view of Essenbergms success with the plate problem, we have solved

the problem of a thin shallow shell, with no edge restraint and symmtrically

loaded by a rigid Indenter within the context of the Improved theory due to

Naghdi _7] • If the loaded region does not become too large, the pressure dis-

tribution between the shell and the constraint is always positive; the shell

contacts the constraining surface. Beyond a certain contact radius, the

solution predicts a negative pressure at the edge of the contact region.

* Throughout the text we shall refer to those developments that neglect the

effect of transverse shear deformation and normal stress in the stress-strain

equations as the "class|cal theories", The extensions, to include these

effects_ shall be referred to as the "Improved theories'.
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There Is some question of the consistency of an assumption inherent In

shallow shell theory (the existence of a stress function from which the direct

stress resultants are derived ) and the simultaneous consideration of the

effect of transverse shear deformation. This is discussed in the text for the

part i cu I a r contact p rob I om under cons i derat ion.

Numerical results are presented for several values of the radius of

curvature and shell thickness. And a physical Interpretation is suggested for the

prediction of an eventual loss of total contact between the Indenter and the shell.
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1.2. Reference Equations apd Sa_ Preliminary Results

A derivation (from the general bending theory of shells) of the equations

of shallot/ shell theory is available in the text by Green and Zerna _91 . The

extension to include the effect of transverse shear deformation was carried

out by Naghdi [71 . Here we wish to recall the assumptions necessary to reduce

the differential equations which govern the resultant stresses and couples in

the shell space to the approximate equations known as shallow shell theory.

Since we are only interested in shells loaded vertically at the apex we shall

record the equations that result after the assulq)tlon of rotational symmetry.

We refer to the coordinate systems of figure l; r is the distance from

the apex measured in a plane parallel to the base plane. The resultant

quantities are shown acting on a shell segment in figure 2.

F.I GI/P,E 1
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Noo
FIGURE 2

Nrr and Nee are the direct stress resultants, Vr and Ve the transverse shear

resultants and Hrr end I_e denote the stress couples. The displacement and

load normal to the middle surface are w and p respectively. The middle surface

strains are err and ego. Primes denote differentiation with respect to r.

The middle surface of the shell is given by

and the assumption of shallowness Is

3_
or that for significant values ofr, thequotlent of It is small compared to one.

Reissner, who first obtained the shailo_ shell equations [Jt] , considers 8

shell to be shallow if the ratio of its height to base diameter is less then

say, _.
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In their rotationally symmetric form, from [6] , the equilibrium equations

are

(3a)

(3b)

in order to Introduce a stress function, the term_P r is omitted inUsually,

(3a). But in this section we wish to draw some conclusions that do not depend

on the existence of a stress function.

If we denote Poissonms ratio by _ t Young ms modulus by E, and tl_ shell

thickrmss by h, then the middle surface strains may be written alternatively

in terms of displacements and stress resultants as

+ : I_ _

hE

eee = "F"I"-- l_E:

and the stress strain equations are completed by

(4a)

(4b)

M. - _D l_/,. + 0_,')

/'3, -'_"+ -5'E_ "_"

(Sa)

(Sb)

(5c)

where D = Eh3/12 (l- 7 2) • We now obtain a relationship between the shear re-

sultant Vr and the normal displacement w. We shall then see the singular per_

turbation nature (in the limit as h _ o) of the contact problem.
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where

If we substitute (Sa,b) into (3c), and replace B by (5c), then

- _r_
,_ clr_ r d r

(6)

Now let

Then (b) becomes

where
V -J- =.

And from (6), in the limit as h _ o, we have

(7)

(8)

contact problem for shells.

2

Vr

Hence, if we obtain the non-dimensional shear resultant of classical theory [4] ,

as the limit _s the thickness approaches zero in the improved theory, we make

a singular pertubation. (Alternatively, we can obtain the dimensional shear

resultant of classical theory In the limit as k2-,00 in equation (6)). This is

the root of the divergence of the classical prediction for the pressure from its

improved value [2] even in the limit of a very thin plate. And from this singu-

let pertubation relating the two theories we account for the improvement in the

pressure distribution that is obtained by employlng the Improved theory in the



We shall now derive a representation for the normal displacement w that

does not depend on the existence of a stress function. For convenience we

neglect surface loading Pr.

From (4a,b) we obtain

r -_-

and with (3a)

I

N°.' + N_.- N_ _ __ - ± V,
t- K K

Upon adding (3a) and (10), and Integrating their sum we have

(io)

Now to obtain a homogeneous representation for w substitute (Sa,b) into

(3b,c) and replace B by (/+C)o Then

8

' : (12)

and with (11) we have

Before discussing (12) and (13) _e record the differential equation for the

slope B. If we substitute Vr from (3c) in¢o (5c) and replace the couples by

(5a,b), then

/ • 2

r' -- (14)

First we obtain the equation for w as given by classical theory [4] .

In (12) let k2 ._ oo. Then

(12')



From (6),

so that (11) becomes

(6),

N,,+No.-
And then (12)' yields

(!1) m

_,, to" + _--_
(15)

If we further neglect the term _ Vr in (3a), then we obtain the equation for

w given in[/+] ,

_4h. r + I=_.._ V = 0 (15)'
R_£:)

We see that neglectlng _V r in (3a) gives a more concise representation,

for then a stress function F exists such that

Nr_"= r (16a)
and

tQ__ --F (16b)

From the coq)atability equation the entire problem is then posed in terms of

two equations for w and F [4] , but actually (15) could have been solved in

terms of Hankel functlons and the direct resultant obtained from (Lla,b). The

solution of (15) m is given [5] in terms of Kelvin functions and for values of

R such that-_(I, the solution of (15) in Hankel functions Is nearly identical

to the solution of (15) I in Kelvin functions. Hence introducing a stress

function is just a convenience for the development within the framework of

classical theory.
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But If we Include the effect of transverse shear deformation then the

existence of a stress function is far more crucial If we are to obtain an

analytical solutlon. For Vr is no longer determined by (6 m) and can only be

given in terms of the solution of (14) and (5c). This solution |nvolves the

general solution of (14), I.e., a sum of modified Bessel functions and an

Integral involving the displacement w. So that if we represent Nrr + Nee by

(11), equation (12) becomes an integro-dlfferentlai equation for w involving

constants of integration (from the complementary solution of (14)).

In view of this difficulty it is apparent that we shall introduce a great

simpliflcation if we adopt the formulation of reference [7] in which the effect

of transverse shear deformation is accounted for while a stress function is

simultaneously Introduced. We present some arguments for the consistency

of these operations for the case of the contact problem,

r
The derivation of (14) is Independent of whether the term_ V r in (3a) is

retained or not. Hence, since w Is specified In the contact problem, B is

specified by the solution of (14). And from (5c) Vr is given and we obtain

Hrr from (Sa). Now consider the direct stress resultants. As we shall see

below, the solution for Vr In the loaded region is given by

c (17)=
where C is a constant to be determined. Then from (11)

,z kK

where In ls a mdlfled Bessel function.

Then from (3b), (17) and (18) we have

R--i- ,, CI.(kr) (19)



Hence introducing a stress function introduces an error of 0 in the

pressure distribution (_). Not, the vertical force F_:v is given by _4_

- Vr (19)'Rv: R

and for the contact problem, if P is the total force exerted by the constraint,

then outside the contact region

From (19) we know that introducing a stress function is consistant for the

pressure and hence for the total force P. So from (19)', if we can argue the

consistency for V¢, then we infer the consistency for Nrr and hence Nee.

Now whether the integro-differential equation (13) is solved for w, or if

we soiv(t)(ZI- ) , the boundary conditions do not change; they are specified in

the contact problem. Horeover, the same number of boundary conditions are used

in determining w, 13, _r' Hrr, Nrr, whether or not we introduce a stress function

(see general boundary conditions in ['6] ). And we can assume that in solving

(ZI) along with (14) we are not solving a system whose order is lower than

that of (13) and (14).

So the fact that the boundary conditions for the problem are unchanged as

well as the order of the system is a good indication that near the contact

region the solution is not sensitlve to the introduction of a stress function.

And since we are also solving the problem for an unlimited shell, i.e., regu-

larity conditions at infinity, we expect the solution to rapidly approach the

membrane solution.

II

(*) Terms of the 0(_1 _ are neglected in the shell theory from which the shallow

shell equations are derived.

(_) Equation 21 is given at the end of this section (2.2). It is obtained by
introducing a stress function in equation 12.
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It is therefore reasonable to simultaneously Introduce a stress function

and the effect of transverse shear deformation for the contact problem, If

the load instead of displacement were specified, then (13) or (2.1) would be

solved with different boundary conditions and it would be difficult to argue

the suitability of introducing a stress function. One would probably have to

solve (13) by _symptotic integration.

In the contact problem, the continuity of Nrr yields the unknown contact

radius. The expression for Nrr in the unloaded region, in order to satisfy
2

0(_), should be obtained from (19)'. Then, the continuity ofequilibrium to

Nrr as determined from the stress function F will yield a remaining constant

of integration in the problemt (the constant A9 in equation 41 below)

And so we close this section with the field equations as derived in _71 .

These equations will be employed in the solutions of the contact problem in

the unloaded region.

(20)

(21)
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1,3. Ihe Formulation of the Boundary Value Problem_

Let us consider the displacement boundary condition for the loaded por-

tion of the shell, The result Is the same as Hertz _ contact problem and we

find It useful to follow the development of the boundary condition in that

as given by Timoshenko and Goodier[I].problem

We refer to Figure 3,

FI6URE 3
r _r

As long as R1 and R are small compared to one,2

the equations of the rigid body and the shell are respectively

and

Z

(ZZa)

Let T be a tangentpiane at the point of contact, and w be the local deforma-

tion of the shell by the rigid constraint. Then, wlth respect to the tangent

plane (assumed to move vertically such that as two points H and N move into

the region of contact, they do so in a plane that remains perpendicular to that

tangent plane) the displacement condition is W_, = - _,
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And if the center displacement of the tangent plane is _, then with respect

to the middle surface of the shell, the displacement boundary condition Is

If we let

then

o? _r 2: - (2.3)

We designate by a subscript "i" the "Inner _l or _#s simultaneously referred

to,) the solution in the loaded region. Similarly we denote the solution in the

"outer _l or unloaded region by a subscript mind=.

Then the boundary value problem for the shell with no edge restraint is

posed as follows: Let r o be the boundary between the loaded and unloaded

Then we have the "lnneP' problem:port ions.

Sol ve

r

SubJect to

o_S V"--_o

and

w= oe-rr

From the solution of the inner problem obtain Vr and Nrr from (5).

"Outer" Problem: r _ r 0

Solve (see reference ['6] )
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R
(25)

(26)

r
' (2_)

Obtain Vr and Mrr from (5) and require that

as r-, oo, B, Vr, Mrr, w are regular

Matchlnq Problem

To obtain the constants of integration, match the Inner and outer solu-

tlons at r o so that

at r = to, Nrrp B, Vr and w end Nrr are continuous

I._. The Homo neous Sol 1o of E ua ions ova ni the Bounder Value

Problem.

Equation (2_) Is a Bessel equation and Its solution Is

/_ 4,z,C_;)_ A, K,{k_l,_p (27)

where the particular integral, by variation of parameters, is given by
P

I I and Kl are modified Bessel functions of the first and second kind respec-

tively and A I and A2 are constants.

By applying the operator_ 2 to (26) end using (25) we have the following

equal ion for w

_76W _J, "_ E_, (29)
-_--_-,Dv _V+ "--'-R"D _'_ --o
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By Iinearlty we factor (29) Into a product of three operators as

v_ (_'+c,')(_'+ c,') _ : o
Z Z

where CI and C2 are the roots of

(30)

4 c_ c_ Ek :o
C _ _=C'----b* R"-'--D

(31)

The solutlon of (29) Is

3

W = _,W_

where w_ are the solutions of

(v'_c,_)w,:o
(v'_ cj)w_ =o

_zN 3 =0

if02 , Chapter 5] the factored operators commute and C,z_C z ,0 •

The solution of (3i) is

(32)

(33a)

(33b)

(33c)

L92. t

C, --_C
(34a)

,. , -i.e

Cz : _"_f-

where the bar (---)" denotes the complex conjugate and

(34b)

__ _' i _-_°:z)f_-_ '
Since the requirement of oommutivity of operators and distinctness of the

roots Ci is met, the solution of (29) Is the sum of the solutions of (33).

We require a solution that is regular as r -, oo and therefore we take

the solutions of (33) In terms of Hankel functions,

Hfz_/ • (1)l-W = D, Ho("(c,r)+ D, o It,r)÷ D_Ho Ic,r_ (36)
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where H(]n '2)

respectively. But (36) must be real and therefore we set

D,,D,_: D,' , D.3*D,; D3'

Then if we employ the Identities

ICI (,2_(
0 x

are Hankel function of order n and of the first and second kind,

and solve (37) for OI and substitute Into (36)

(B7)

(38)

we have
!

(39)
(2)/

.r_ , "'" ")- D,'._ No(c,r)+ D,,,_,t -O_ -_Ho Lc,
Where Re ( )¢ ) and Im( _ ) desiglmte the real and imaginary parts respectively,

Now if we further note that

hl o" (;): z 3.{,)- rl:"c,)
uk^.^ , i_ a R_ssel function of order n then with (35) and for convenience

new real constants A i, the solution (39) becomes,

o)/w: A3_, _1:"(_')÷A_H0 _) _/1, P_3o(_)

f L_/z_-: E .where

From (25) the solution for F Is then given by

(40)

(41)
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We note that if we neglect transverse shear deformation (k 2 . oo), then e-, 3_/2

and _-_r i 3/2. And if we recall that

(/_2a)

(42b)

I r r (42c)

where kei, ker, ber, and bei are Kelvin functions, then as k2-. oo, (40, 41)

reduce to Reissner's solution IS] •



1.5. The Solution for a Poin_ Load a.t the Apex t

To derive the solutlon to the problem of a point load at the apex of a shallo_

spherical shell having no edge restraint we shall employ the technique used by

Koiter (Ref. [161 ) in his solution for a complete spherical shell under point

loads at its poles. Accordingly, we require the following representation of the

divergence theorem: If S is the surface area enclosed by a smooth countour C,
..+

and n is the unit normal vector to the contour C in the tangent plane to the

surface, then for a twice continuously differentiabie function _ on S,

Let us consider the solution for the normal displacement w_ and required that

_.S _'---+o_ W, W'

o. s r --_ oo , ,8 , W --_. o

(_a)

(_b)

(_c)

where w is the solution of equation (22) in the absence of surface loads except

for a concentrated force -P at the apex,

Our result (40) is the solution of the homogeneous form of (21), and the

only component that is bounded at r_--o and approaches zero at Infinity is

r Le/_)W---A3 R.eH:"CTc (++s)

And so in order to complete the solution we must determine the constant A3. But

we first record some formulas for the behavior of the value of Bessel functions

for small values of their argument°

If z is a complex variable, then by definition

Ir:O

19
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We denote the real

fe' as a = by _n and

and imaginary parts of Jm (i_) with 2 in polar representation

Vn so that

If the Bessel functions Ym(E) have their real parts denoted by Urnand their

imaginary parts by Vm, then

We require the representations for n--o,l_--I

erence (17) we have

; from the introduction to ref-

(_e)

where So, To, Sl, T I are regular nearf_--o and _ is Euler's constant.

We now proceed wlth the solution. Integrate equation (21) over a portion

of the surface of the shell, with p a concentrated load.

Then with

D _w 0/_+ " _,v") _"V'Fo/r = P

(4])

c 3

5

(47)
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Now let c be a circular path symmetrical about the apex and given parametrically

by polar coordinates ro, CO. We take the limit of (L_7) as ro. o

ro-.O o D_'K o r-- ' e_'_

where-P is the point load and we have dropped the terms that obviously will not

contribute (see the conditions /#+a) in the limit as ro , o.

But from equation (201,

where a I and a2 are constants and a2 = o by (LiJ6a). Hence from (/+/+b) we see

that as r o. o the second term in (48) gives no contribution and we are left

with

to-do r "-to

Now since
!

from (LIG f,g) we see that

Z

Where _(r) represents terms containing singularities 0 (In r) and the remaining

regular terms in the series expansion for HI(I) (_1. And since

( >) ( 1_- _,_'"(_ _% - c H,('_ " _J'

we have

Then (451, (/+9), and (51) yield

or

(s])

__ Tf ,o,v_e (52)
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Hence the solution w8 for the point load is

C ")/_f ieb)I

From (42a) we see that as k2 -_ oo, (i -, 3t_12) t

(53)

,l'"lr;.e/,).--,.z.6.u_.Z

and

_r

the solution given by Reissner[5].

We now determine the stress function F given by equation (Z_l). From the

determination of constants in the solution for w, we see that,

(5_)

and we must determine A9. But this follows immediately from requiring Nrr to be

finite at r = o. From equation (lO), Nrr =-F/r, so from (5/4) and (50)

we see that Nrr is given by

I J }
T_

And then the requirement (/_/¢a) is met if

And with A_ given by (52) we have

(56)

Hence, the stress function F6 is

(57)

" _ f _l_r-_e''''c _°/'fi _t (58)
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if we make use of (42b), we see that as kLCO 3 e--_ 51r/a"

F6,__ _ __It

the result derived by Reissner[51 .

To complete the solution we require B"

B = A, K,(_," / , /g,

end _p is given in appendix I, equatlon (h) so that

_ T 3

From (27), with A t ,= o by (Idtc) we have

(59)

(60)

Now, from equilibrlum, the total resultant normal force Vv acting on a vanishingly

small circular region with center r = o is

2_

_/v: " .ITI"V" o
-lib (6l)

r-_o

With Vr given by (5c), Nrr from (55) and recalling Ill, page !15] that

where _ (r) represents terms bounded near r = o, equation (61) becomes

' t
where _e

And with the behavior of H1(I) (il) given by

yields

(50), and A) from (52), (61')

_F _zC_P)Jc{ k'f_h_.o t
(62)
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We note that it is further necessary to verify that the solution obtained

is the same solution as an appropriate limit applied to a sequence of problems

;nvolving continuous external loads which in the limit approach the concentrated

load. We have not carried out this procedure but rely on Koiterls _16] conjecture

that there is no difficulty as long as the strain energy is bounded; this is the

case in the solution given,

(53)

(6B)



1.6. Ihe SymmetriFal Constraint of a Shallow Spherical Shell with No Edqe

Restraint.

In Section 1.3 we have formulated this boundary value problem. For con-

venience we recall it as follows: Let r denote the boundary between the loaded
o

and unloaded portions of the shell. Then for

S fo _e

Ir> ro , o.s

and at r = r ,W, B, V
0 r'

_ -- oo, w,/_, q,, M,, k/,, -_ o
Mrr, Nrr are continuous

(64a)

(64b)

(64c)

If p(r) is the load on the upper surface, the equilibrum condition

ro
/I

(6S)
ao

is

Once again we denote the solution in the loaded region by a subscript i

and in the unloaded region by a subscript o. We shall denote the resultants

(64a) by Vi; Mi and Ni and those of (64b) by V, Ho, No.

28) the requirement (64a) is satisfied by taking

Then, from (Z3, 27,

From (5c)

and from (Sa)

5_k

)
From equation (40), we satisfy (64c) with

W_ : _'- _r z (66a)

(66b)

(66c)

(66d)

And then from appendix I, equation (i) we have

(67a)

from(m)
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and from (l)

r. ;%

+A4_[ (-_')(W."v',z,-Q.o)H,"'r_))1

After some algebra, the continuity conditions

A3 and A4, are C _-o -

['" (1)/

i--

(64c)

(67d)

determining A1, A2,

= Z _o (68b)

(68c)

. '_% LeA

A, Ke[Ae ,."', _ ,,,,qT "° L'I+ A4_[ _ No 1,1.A, kKo(k,o).A,_]:o(_4-,_(68d)

The solutions for A3 and A4 follow from (66a,b) alone and therefore the

algebra is not too ted|ous. Once again a bar denotes the complex conjugate

, I_o/]+ztr,_, I_o t_._s (69a)A,(,..)XI: " '"'

e"_e/'I'Io , (_a
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And for

¢ • (Appendix IX- T ,_"_e'%,. equation (h'))

8- _,,-'- jL-_y_l''>_,_-& '
(equat ion 35)

(equation 6')

(oquat ion 35)

(equation 23)
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Greens function for the problem, WS, .derived in section i.5.

Hertz' problem [I J , the center displacement 6 (r O) satisfies

We now recover the center displec_ent 8(r o) which follows from the

For as in

C
and p(r) is now given by (3b, ll)

And from (53)

(71)

(72)

Where

_I_ )] (73a)

(73b)
3 -- - -- _.'II"" "_=

From (71,72,73) it is evident that we require the following Integrals:

(for details of the evaluation see appendix 1, section C)

A,(t.3-
O

^_.zi*_/ __ ,,,,,'n "-'" } (74a)

(74b)
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0_ ,., _ _b/.

O

9,•
(7_c)

Then substituting (72) Into (71), making use of (73) and letting

_: _e._ _] (75)

results In

- _ s_ cor.) x_C_.)}
(76a)

and C (to) = _(_t%_ - l<.(Jero )I_,(._ ,.) _'(.r'o ) (77)

To obtain a relationship forl_and r ° we employ (65) (or the continuity of

_rr, with Nrr consistant with (65)), and with pand _ as given by (72) and

(76a) respectively.

(78)

With A! (ro; _) and _ (ro) given by (69d) and (76) respectively.
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1.7. Discussion of the Results for a Fla t indente r

Figure 4 shows the pressure distributlon p(r) between a shell and a

plane rigid Indenter for a series of areas of applanation_ On the same figure,

the resultant force P(ro) (equation 78) ls shown as a function of ro, the radius

of the flattened area. Flgure 5 shows the resultant force for a shell radius oT

30, thickness 1.0 and Poisson's ratios of 0.5 and 0.3. Figure 6 is the

same presentation for a thickness of 0.5.

The pressure distributions predicted by the theory are seen to be physically

consistent up to ro = 1.27 for the dimensions of fig. 4. The classical theory

predicts that the pressure dlstributlon is immediately negative.

We may regard the point at which the pressure becomes negative as the

end of the validity of solution slncewe have assumed that the Indenter

contacts the shell everywhere In the applaned region. But,the fact that after

a certain radius of flattening the presIure distribution becomes negative, may

be Indicative of the Initiation of some kind of instability. In the examples

shown the pressure becomes negative while the deformations are less than 1/3

the shell thickness and conform to Donneil's criteria _13] for the validity of

shal low shel ! theory.

Although the accurate prediction of instability would probably require a

more elaborate (at least geometrically non-linear) theory, these results do

predict a physlcally reasonable situation. That is, if a shell is symmetrically

deformed by a rigid surface, than beyond a certain contact area the shellas

resistance to deformation ls no longer monotone; the portion of the deformed

shell near the edge of that contact region is unable to further resist defor-

mation.

i I

_11_e calculations were carried out on the IBH 7090 computer at the University
of California at Berkeley.
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. Appendix I

A. The Evaluation of _,n

We evaluate the particu]ar integral Bp, equation (28) with w given by

In (b) let

are two cylinder functions, then ['i5, pg. 90 1"=(a)

(b)

J,

and recall that

K,_w,tl:-_.',"(_k,Ll

K,_hl:-_-},;"C_h)

(d)

Then from (b,d) we have

r ¢iO/z. .

(e)



and

r

e /J.,O,,L/._=

e;'ejz_..._ .. ix" ke_

+T .L,t_)_,+,_e}j"
(f)
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From (e,f) it follows that

Ik

And hence, from (28), (a) and (g) we have

(g)

where

(h)

B. _valuation of The Resultan_ Stressgs and Couples

given by equation (b), for the normal dlsplacem_nt w from equation

slope B is (27,h)

We first evaluate Mrr, i_, Vr as given by equation 5, Nrr and Nee as

(o). The

(m)
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From equation (a)

' A3R_I e_l" '"

and we denote this and similar expressions below as

-_ : A4 i-NC"( IA_ _,( o)

Differentiating (i) yields

_r - it'"

+ I As Re Ebl_ )}

Hence

(!)

(m)
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and

.J

The direct resultants are obtained from equation (16) as

(n)

(o)

(p)

T_he Evaluation of the In.teqralsAl,A 2_./_3. of sectionC.

These integrals are evaluated with the aid of equation

the result [18, pg, 133]that for WII a cylinder function,

X "÷0

p_z.

lo

(b) of Appendix I,

and the following limits(which result from the formulas

r _o

[,,.,.

(r)
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r-,)o

=o (s)

From

The lower

(q) we have

ro ' ;)1_)

0

limit is evaluated using (r) above;

- eg%/-s "'/-r i'_(T/ r_l, ,_e '/')

/ "_el,.Vz )]

setting i_e - -_- e i_& _ we have

The evaluation ofA 2 (ro) follows similarly from (q and r) as

and A 3 (ro) follows from (b)) (r) and (s)

fo

o

I C :_/,,,

- '-¢____,+J, t_ 14,{_:,I,,Oe_)v +

, {_ie
,i-,IEa

,t*

Cv)
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CHAPTER 2

Ap F-xperlmeql;a,,1 Study of the Kh$oloav of the _..rltea in .Vitro

2. |. _nt roduct Ion

The purpose of thls study Is to understand under what conditions of

magnitude and duration of loading the cornea behaves as a linear viscoelastic

sol id. Accordingly, our experiment has been designed to ascertain under what

circumstances the cornea conforms to the requlrements of the Boltzmann Super-

position principle. Basically we have relied on hogs eyes, but several human

eyes have also been tested.

An attempt was made to assess any changes in the me_hantoal properties

of the cornea due to physiological change after death. Hence, we performed

some experiments at the site of procurement of the enucleated eyes, approxi-

mately six minutes after the animal's death. Although the results show some

consistency, the temperature was not controlled and due to the simultaneous

action of the variables age and temperature the results oti the aging dependency

of the mechanical properties of the Ln vltr.._._ocornea must be regarded strictly

as prel Iminary. Ifmmver, It was definitely established that the creep response

shown by the cornea is not an artifactual result of emucleatlon.

The experiments may be grouped as follows:

A. Creep Tests at an t_traog_lar pressure of /_Omm.tt_. (FIQures 9-15).

These experiments represent the most complete element of the rheological

study. An Internal pressure of /+0mmJlg was choosen to simulate the state of

the cornea under Schidtz tonametry or tonography. The plunger diameter in these

tests was 3 ram. This dimeter and the loading range (/+ g. to 12 g.) are approp-

rlate to the conditions during the application of the Schi_tz tonometer.

B. Creep Test._ at a Fixed Load and_Different Intraocular Pressurew. (Fiaures
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These experiments were designed to investigate the dependence of the

rheologicai behavior of the cornea on the level of intraocular pressure. The

creep response of the cornea was measured for a given load and an intraocular

pressure fixed at the consecutive values of 20, 30, 44), 50, and 6Omm.,g.

To obtain a description of the corneal response at a loading range per-

tinent to appianation tonometry, a larger plunger (/4mm. diameter) was employed

with a loading range of 2-12 grams. Hence we have an applied pressure (due to

plunger loading) that is at one degree considerably lower than class A and

its upper range overlaps the lower loading range of the experiments in class A

C. _orneal C_press{on Tests, (Fiqure 21).

Since the cornea is capable of compression, this deformation mode was

investigated as follows. A portion of the cornea was removed and placed on

a steel bali whose radius was approximately equal to the corneal radius at

an internal pressure of 20mm.Hg. The experiments were then performed as

though the cornea was supported by an intraocular hydrostatic pressure. Since

we are basically interested in the instantaneous (elastic) compression response,

the steel bail was thought to present a negligible source of error from the

viewpoint of obstructing the diffusion of fluid across the inner surface of

the cornea.

D. Yolume Expansion Tests (Fiqure 22_. (Eye Loaded Only by the Intraocular

Pressure).

When the intraocular pressure Is raised, the upper surface of the cornea

(and sclera) symmetrically deforms. If the materiel behaves linearly, and a

pressure increase from Po to Po + 6P yields an increased displacement 6w,

then Po + _pshouid induce a dlsplacement change of(_w. These tests were
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designed to check the material I lnearity of the eye in this deformation mode.

A pressure range of 20 - 60ram.rig. was covered in lOmm.tig. Increments.

In section 2.2 we record some Ideas from the theory of linear visco-

elasticity. Section 2.3 contains a description of the experimental equipment,

and in section 2.4 we describe the experimental procedure.

The results of the creep tests are discussed in this chapter (section

2.5). The corneal caapression tests and volume expansion tests respectively

provide an estimate of the foundation constant (see chapter 3) of the corneal

stroma and the Young's modulus of the combined layer of Descemetls membrane

and the pavement epithelium (see Figure 23). These tests are pertinent to

the measurement of intraocular pressure and are discussed in chapter three.

2.2 Besults from the Linear Theory of Viscoelasticity

The results stated here are from the foundations of linear viscoelasticity.

have been rigorously given by Gurtin and Sternberg [ref. 26] . Dis-These

cussions oriented toward engineering application are numerous; here we refer

to the discussion by Lee [ref.26] • The distinction of a semi-relaxing

viscoelastic solid is due to Hunter [ref. 25 ] •

If Pand (l are linear operators in time, and O'(t) is the stress variation

with e. (t) its corresponding strain variation, then a material is linear

viscoelastic if it obeys the law:

The relationship (79) may also be given as a hereditary integral. The exis-

tence of this representation stems from the postulate of i inearity which is

equivalent to the Boltzmann Superposition principle:

Let a particular load variation be given by
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and the deformation response by

Sct 2 lt)

Then if the load is changed to

(79b)

L t{)= _,, L, lt) (79c)
where _r are a series of constants covering the domain of loading, then the

superposition principle requires that the resulting deformations

satisfy

k'(t) - 2, (79d)

If the requirement outlined in (79) is met, then the stress and strain

in the body are related by a Ouhamel integral as

where_'(t) is known as the creep function. Alternatively

t
/1

where G{t) is known as the relaxtion function.

A material is called seml-relaLxing if the extension response due to

an applied constant load approaches a finite limit as time Increases, It is

possible to show that for such materlals_ the force required to maintain a

constant deformation does not fall to zero in time but appraoches a constant

va 1ue.

In order to check theapplicabllity of the superposition principle (79)

cXr
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as a function of time and see if these curves (for successive _r) coincide

with the curve 6,(t). A viscoelastic material will have a response curve

6 (t) that differs in shape from the load curve L (t). The special case of

an elastic solid is included in (79); in that case the load and deformation

response curves wi II have the same shape.

If a material can be represented by the laws (80) or (81), (i.e. 79

holds) and is of a semi-relaxing nature, then in the quasi-static case,

assuming the boundary conditions for the elastic and viscoelastic problems

are the same, the viscoelastic result follows by a correspondence principle

applied to the solution of the elastic problem. (see section 3.6).

2.3 The Description of the Experimental Equipment

To facilitate the discussion we first give a review of the equipment

employed. Each item is designated by a numeral and shall be referred to by

name (e.g., motion transducer) and numeral. The detailed description of any

particular apparatus will now be given and this list is referred to in the

text.

I. Hotion Transducer

The mechanical transducer employed was a Taft-Peirce Versacheck Electronic

Gage. The basic equipment consists of 1) a pick-up head which operates

on the linear differential transformer principle and is capable of

detecting motion changes of the order of ! x 10-6 inches. 2) A phase-

sensitive3extremely linear, carrier amplifier to magnify the trans-

ducer signal, and a I)C meter which reads in fractions of an inch.

The Versacheck unit has an internal calibriation circuit for determ-

ining the gain of the entire circuit. The unit may be selected to

operate any one of four meter graduations: In inches these are



41

5 × !0 "4, I x 10-4 , 5 x 10-5 , ! x l0 "5.

The meter is of the dead beat type, accuracy to within I_ and a

response time of ¼ second with no over shoot. After a 30 minute

warm up time, the stability is 2 x 10-6 inches per hour assuming

good temperature control.

II. Brush Recorder Hark II

This recorder was used to continuously record the motion transducerSs

output.

III. Pressure Transducer

The intraocular pressure was monitored by a Statham Hodel P23

pressure transducer.

IV. Visicorder Oscillograph

The output of the pressure transducer was recorded by a Honeywell

Hodel 906 C Visicorder Oscillograph. The Iteiland galvanometer

type chosen was No. H200-120.

V. Statham Control Unit

The l_del CB-19 Control Unit was employed for calibratln 9 the

pressure transducer and for providing its D¢ input voltage.

VI. Silastic

The eyes were set in _ Corning Silastic RTV 502 with a Stannous

octoate catalyst. The setting process is not exothemic.

The motion transducer (l) was supported on two parallel rails to facili-

tate placement over the eye. The ralls ware attached to a heavy steel plate

which was the support for all the equipment dlrectly Involved in measurement

(see Figure 7). The plate rested on a felt pad; the masuring equipment was

sufficiently isolated from vibration.

The motion transducer was fitted with a rigid extension arm capable
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of extending from 5 to 12 inches. It was found that a lever arm seven

inches along with the I x I0 "4 and 5 x 10-4 inch scales of the DC meter of

the motion transducer (I) was capable of measuring the imposed corneal defor-

mations. The variable extension arm was required to allow operation in the

vicinity of the eye and to accomodatethe transducer choosen since a-priori

we could not be sure of the deformation range. A weighting platform (covered

with foam rubber to damp any impulse due to the application of the load) was

attached at the end of the supporting arm. The underside of the platform

accepted the plunger that contacted the cornea.

The experimental results below are appended with the pertinent data of

eye age, internal pressure, outer corneal radius of curvature and room tem-

perature. Two classes of experiments were carried out:

=3 After prn_dJr_nt of the enucleated eyes, each eye

was set in its own covered container with the eye

resting on saline saturated cotton and allowed to

equilibrate with room temperature.

b) At the site of procurement three eyes were tested six

to seven minutes after death. The..-_ted eye was

chilled and tested one to two hours later (see

figures 8, 14, 15 )

The class a includes the two human eyes and over twenty hogs eyes.
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2.4 Experimental Procedur_

1. The eye was removed from the molst saline atmosphere

(see section 2.3b) and set in silastlc (V1). Approxi-

mately three-fourths of the posterior globe was immersed

in the silastic, Prior to placement an 18 gage needle

was Inserted in the anterior chamber and attached to a

water column.

2. The eye was covered with 4-5 c.c. of saline during each

creep test.

3. The 3 mm. diameter, concave plunger attached to the motion

transducer (l) vla a seven inch extension arm was placed

.

2.4 A.

over the eye,

form so as to

load.

The eye was raised on a cam-adjusted plat-

pre-load the cornea with a 0.5 gram pre-

4. The plunger was loaded and the deformation response

recorded until it was no longer possible to discern changes

/

in deformation.

5. The eye was unloaded and allc,_.ed to rest for a time period

equal to the loading time. The saline was removed during the

rest time.

6. The eye was reimmersed in saline, loaded with a larger weight,

and the measurement process repeated.

After the complete run the corneal curvature was measured.

Discussion of the Experimental Procedure

i.a The silastic receptor was pliable and did not interfere

(due to its distance from the loaded region), with the

measurement.
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2.a The plunger head and stem were wetted, hence maintaining a constant

surface tension throughout the run. The entire unlt was balanced with

the surface tension acting on the plunger, hence the surface tension was

controlled and eliminated as an operative force and as a source of experi-

mental error. (If the plunger was not immersed in saline, then the surface

tension could change during the run and the corneal load could not accurately

be known).

3.a The pre-load was necessary to smooth out any surface defects and to make

certain that the plunger contacted the cornea at the time it was loaded.

The pre-load can always be calculated and it is too small to be subject to

an error due to corneal creep. Hence, it may be found from the elastic

calibratlon of the instrument. It does not interfere with the calculation

Involved In superimposing the creep curves.

4,a It was possible to visually discern meter motions of one-tenth unit, or

.0087 ram. Thls Is better accuracy than can normally be obtained with

electronically recording indentation tonometers.

Cqrpeal Compress ion

A central portion of the cornea was dissected and placed on a rig!d ba!|

of radius 7.5 mm. The cornea was then loaded as in the creep tests above

except it was not immersed in saline. The surface tension was eliminated by

covering the corneal segment with a piece of 0.00025 inch thick teflon.

Since this test is a compression test, the teflon does not introduce any

conceptual problem, whereas in the creep tests a similar procedure might have

Introduced extraneous membrane forces. Young_s modulus for teflon is several
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orders of magnitude greater than for the cornea, so in the compression tests

the teflon sheet introduces no experimental error.

2.4 C. Volume Expap_ion Experiments

These experiments closely followed the procedure in 2.4 A, except the

only loading on the cornea (or sclera) was a preload less than 0.1 grams. The

deformation response was obtained by raising the intraocular pressure through

10 mm.Hg.increments. (The eye was set in the silastic in such a way that

there was no motion of the limbus during the corneal expansion test).

2.5 Discussions of the Creep Tests

The cornea conforms to the requirements of the Boltzmann superposltion

principle.

1. Figures 9, lO show the results of creep tests for two excised human

eyes. The creep curves superimpose to within lO percent for the

3.2 and 7.2 gram loads. The tendency toward deviation from

]lnearity in the II - 12 gram loading range occurs outside the

clinical range of Interest for the Schi#tz tonometer. Figures I1, 12,

13 show representative results for three of the twenty enucleated hog

eyes tested, it is important to note that whereas the human eyes

showed a long term creep component, the hogs eyes demonstrated no

creep after two - three minutes. (_)

The elastic response for all the eyes superimposed linearly,

and the initial response for the 3.2 and 7.2 gram loads indicate

that in that loading range it is reasonable to consider the initial

response of the cornea as that of a linear elastic solid undergoing

small strains.

(_) Our experiments indicate a maximum of seven to eight minutes for the 7.2

gram load. St. Helen & RcEwen _22] report a measureable creep up to

thirty minutes for the sclera.



46

o

,

Figures, 14,15 show results for two (of three) hog eyes tested

at the slaughter house. The solid lines show the creep response

of two eyes tested six - seven minutes after the animals death.(**)

It is clear that the creep resl_se is not an artifact due to

ageing of the in vitro specimen.

Figures 16 - 19 show that the response of an enucleated hog eye to

a sequence of loads at a given pressure; the figures in sequence in-

dicate the results for internal pressures of 20, 30, 40, 50 and

60mm.flg. Figure 20 shows the results replotted to show the corneal

response for a fixed load with the internal pressure as the para-

meter, At a fixed level of pressure the cornea behaves linearly for

the applied ioad sequence.

(_'_) The mated eyes were refrigerated after enucleation. When they were

tested)approximately 1½ hours later) they all showed geometrically similar

responses but the magnitude of the instantaneous response was diminished in

one case by 20 percent and by less than ten percent for the others, Although

this result is of some interest, it is inconclusive due to the simultaneously

acting variables of temperature and aging.
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CHAPTER 3

Tonometrv aqd TonoQraphy

3.1 Introduct;ion

In this chapter we shall employ the previous results to analyze some

Instruments that are used In the detection of glaucon_. Two of the devices

that we discuss are the Goldmann [21"] and the Hackay-Harg _ 23]tonometers, *_ and

In particular, their sensitivity to the magnitude of:

a) The radius of curvature of the coronea

b) The thickness of the various corneal layers

c) The Young's moduli of the corneal layers

From an estimate of the magnitude of the surface tension force operative

during Golclmann applanation tonometry, and from our volume expansion tests

(figure 22) from which we deduce Youngis modulus for the outer layer of the

hogis cornea, we are able to Infer the order of magnitude of Youngis modulus

for the central corneal layer. Hence we are able to extend Goldmannis analysis

of his applanation tonometer to a quantitative description of the forces

Involved during applanatlon tonometry. Our results indicate that a certain

kind of elastic Instability might appear during the applanation procedure.

After discussing the applanatlon tonometers, we consider the Indentation

tonometers; in particular the SchilJtz tonometer (see, e.g., [191). The linear

vlscoelastlc behavior of the cornea allows us to analyze some aspects of the

time dependent process known as tonography.

For completeness we Include, In section 3.2, a brief description of both

the anatomy of the eye and the glaucoma problem. Section 3.3 Is devoted

to the development of a structural model of the eye. In section 3.4 we

discuss the Golclmann tonometer end in section 3.5, the Hackay-Marg tonometer.

i i i

_Hackay-Harg tonometry differs from the use of previous applaning tonometers
in distinct ways set forth on page 60.



Section 3.6 is devoted to some aspects of Schiltz tonometry and tonography.

3.2 The Anatomy of the Human eye. The .Glaucan_ Prob|e_n

Figure 2/+ is a drawing of the internal structure of the human eye. The

eye is formed by two layered, spherical shell segments. The segments are

flexible and (see section 33 ) they may have considerably different mechanical

properties. Fluid is continuously transferred into and out of the anterior

chamber. Hence we have the typical physiological process of fluid transfer

in a flexible vessel. Figure 25 shows the range of dimensions of the shell seg-

ments.

As far as the fluid mechanical situation is concerned it is sufficient

to consider that at any instant the anterior ohambe_of the eye contains fluld_

reasonably treated as Newtonlan, (see article by Goldmann [2(_, p. 105 - 125),

at some pressure Po above atmospheric. In normal eyes Po is 15 - 17 mm.Hg.

The mechanism by which fluid enters the anterior chamber is not com-

pletely understood but it is known (see article by Kinsey ref. 20, p. 62 - 88),

that at least the simultaneously acting processes of secretion and diffusion

are of importance. Whatever the actual chemical potentials and their sources

may be, for our purpose it is sufficient to consider that there is a flo_ of

aqueous out of the posterior chamber, along the lens-iris passage way, end

into the anterior chamber. Fluid leaves the anterior chamber by flowing

through the trabecular meshwork, which can be considered as a perous media, and

into the canal of Schiemm. In normal eyes the rate of fluid out-flow, from

the anterior chamber (volume'250 micro-liters) is approximately 1.4 micro-liters/

minute.

Figure 26 illustrates the flo_ pattern in a normal eye. Figures ;_7-29

illustrate various pathological sltuations which can cause an increased intra-

ocular pressure. It is this increase in intraocular pressure, whether constant

or periodic, (as In the majority of cases), that is a most frequent sign of

g I aucoma.



Tonometry and tonography are processes which attempt to detect abnormal

(say above 20mmHg.) pressure levels or the response c;apability of the eye to

an increase in pressure. A person can be said to have glaucoma only after

there is damage to the optic nerve, but it is generally held such damage can

be caused by abnormally high or periodically high intraocular pressure.

3.3 A Structural _de! I of the Eye

Goldmann [211 has suggested that the cornea behaves structurally as

a three layered sandwich shell. The outer layer, composed of the pavement

epithiilum and Bowman's membrane, the center layer made-up of the corneal

stroma, and the lower layer being Descemet's membrane. (See figure 23).

We shall also adopt this conceptualization while describing the

mechanical properties of the cornea. Since the outer layer is by far the most

rigid, the volume expansion tests (figure 22) for the cornea are essentially

governed by the properties of that layer. In these tests we measured the

motion of the upper surface, and this motion iS less than or equal to the

motion of the lower surface. The lower surface is so thin, and the central

layer has such a low rigidity under the compressive strain during the expan-

sion test, that the pressure rise is transmitted across the shell and decreases

to zero across the upper surface. We see that the cornea demonstrates a linear

behavior, and we can obtain Youngas modulus (of the outer layer) from membrane

theory.

If_W is an incremental displacement for a pressure rise_P, then

E_ (82)

where R = shell radius, E = Youngls modulus, and h = the shell thickness. From

AW -3
figure 22, _V- = 4 x iO mm-/_aHg. The radius of the outer layer was 7.5 Bin.,

and its thickness was between 0.1 and 0.2 ram. Then from (8?-), Young's
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modulus for the outer layer EI is bounded as follows:

14.0 x 104 mm.Hg. > EI > 7.0 x I04 mm.Rg.

A thickness of .2 nun. was a generous upper bound and EI is probably close

to I_ x 104 mmHg.

The volume expansion test for the sclera, figure 22, Indicates the non-

linear material behavior of the sclera. Opthalmologlsts have Introduced the

concept of the coefficlent of "scleral rigidlty"; this coefficient is a con-

stant of proportionality In the logarithmic relationship found between a

pressure change _P and an Induced scleral volume change /_ V. If _ P Is the

rise above a pressure level Po' then the coefficient of scleral rigidity F,

Is defined by

The non-linear relationship (83) closely flts our data for the sclera.

Since the expansion is sylmetrlcal, equation (83) Is the same If A %4replaces

V. For the hog eye shown, F - 0.02. Hence the cornea is supported on a

shell segment (the sclera) that demonstrates a non-linear material behavior

while undergoing small strains. Elastically, the sclera has a constitutive

law in which (in a direction parallel to its surface) an Increment of stress d ,

is related to an Increment of strain de by

de = F IOgl0 dQ" (81+)

The cornea itself Is not free from a non-linear behavior as demonstrated

by the cornea1 compression tests (fig. 21). We Infer from these tests that the

central layer, the strom, behaves as a non-linear foundation for the upper

layer. But since the entire cornea confirms to the requirement of

the Boltzmann superposition principle (Chapter 2),
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we expect the nonlinearity to manifest in a direction in a plane perpendicular

to the outer corneal layers. Horeover, if we define a foundation constant E
n

by

= en En (sS)

where _-n is the normal stress, and eh the compressive strain = displacement/

thickness, then from figure 21 we see that for the loads pertinent to applana-

tion tonometry (about 2 grams on a 3.0 ram. diameter plunger) En "_- 200 mmHg.

Thereforelfor applanation tonometry the non-linearity of the central

layer manifests in a material whose rigidity in a plane normal to the outer

layers is negligible compared to the rigidity of the outer layer. We can

separately estimate its effect during applanation tonometry. During indenta-

tion tonometry, the stroma are 'mcompressed out 'm and we can ignore the com-

pression mode.

In view of the apparent non-isotropy of the inner layer, (this also is

indicated by the anatomy of that layer) we must estimate the modulus of elasti-

city in a direction along the middle surface of the layer. Denote this modulus

by Et.

Since we cannot separate the individual layers of the cornea, we can

only infer Et indirectly. Our estimate follows from the magnitude of the

surface tension force operative during Goldmann applanation tonometry and

the analytical results of chapter one.

During the application of the Goldmann tonometer the surface tension

balances the structural resistance of the cornea. In section 3.4 we will

estimate the surface tension force (equation87). Suppose that the cornea

is applaned to an area _t_ose radius is .75 mm., and suppose that the tears

spread out to cover a 1.5 mm.radius. Then the surface tension (for a corneal
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radius of 8.0 mr,.) force is about .B5 grams.

Now if the outer layer of the cornea is .1 mm. thick, and we assume

4
E I = ZO x 10 mmoHg_ then the structural resistive force PI from that

layer is at least (figure 31 , and see the discussion in !.7)

or

PI >1 o.z85 _ro_rns

Hence the corneal stroma can at most contribute _6 gramsto the resistance,

(since, [21] , surface tension over balances the corneal resistance at an

applanation radius of I.O mm.).

If we assume the GenLral later to be 0.6 mm. thick, then (figure 36)

?_ =0-05

and if P2 = O.i gram, then

Z.7_ I0 z -3E t = 3.85-x io E,

Since we have employed a lower bound for El, a lower bound for the thickness

of the upper layer, and have neglected the factor of corneal compression, all

of which contribute to a high estimate of P2, we see that Et is at least 2

and probably 3 orders of magnitude lower than E ! .

Since we have measured the displacement of the upper layer, and since

the actual thickness of the lower layer was unknown _or the eye pertinent

to figure 22,)we cannot estimate the modulus of elasticity of this layer. (It

may be possible to "peel ofP' Descemet's membrane and separately obtain its

modulus of elasticity.)

However, during applanation tonometry wrinkles can be seen in this layer

21] and we can assume that its contribution to the rigidity of the applaned
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cornea is negligible. For indentation tonometers, the magnitude of the

modulus of elasticity for I)escemet's membrane is of importance for any quant_ta-

tlve analysis. In section 3.6, we concern ourselves with the qualitative be-

havior of the Schilltz tonometer.

So we propose the following structural model of the eye.

The eye is composed of two different mechanical structures, the cornea,

and the sclera. The cornea is a shallow shell segment and is attached to the

sclera, a spherical shell whose volume Is about 15 - 20 times the volume contained

by the cornea.

The cornea is a three layered sandwich shell. The modulus of rigidity of

the upper layer Is several order of magnitude greater than the modulus of the

other layers. The center layer Is an anisotropic material demonstrating a

non-linear material behavior in a direction normal to its surface. The other

layers behave as linear materials. In the loading range (2-7.5 grams over a

(I.5)2mm. 2 area) of interest for Indentation tonometers, the entire cornea be-

haves as a linear viscoelastic solid.

The sclera Is a non-linear material. In a direction along its surface,

an increment of stress de, is related to a strain increment de by de- F Ioglod0-t

where F is _ c_onstant.
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3.4 Applanatlon tonometry

An applanation tonometer flattens a central portion of the cornea

and measures the reactlon to this deformation; it is a force measurlng device.

Two tonometers that deform the cornea in thls way are the Goldmann

and the Mackay-Harg tonometers,

The Goldmann tonometer measures the force required to flatten a 3.06

mm. diameter area. (The perimeter of the circle of applanation Is detected

optically and the somewhat curious 3.06 mm. dimension corresponds to an area

over which I gram applied load is equivalent to an average pressure of 10 mm,l_g_.

argument, given by Goldmann I21] , for why this instrument measures theThe

Intraocular pressure may be outlined briefly.

I. The forces acting on the rigid applaning surface are the struc-

tural resistance of the cornea, the intra-ocular pressure and the

surface tension of tears.

2. The basic resistance to applanation comes from Bowman's membrane

and the remainder of the cornea offers a resistance that is a higher

order effect.

3. During the applanation process, Descemetis membrane relaxes,

the pressure inside the cornea becomes equal to the intraocular

pressure, and when the flattened portion of the cornea is 7.35 mm2

in area, the appliecl pressure equals the intraocular pressure. The

force induced by the surface tension of tears, at that flattened

area, balances the structural resistance of the cornea. During

the process, the loacl Is sufficiently small to neglect any induced

pressure rise due to loading.

The Hackay-Harg tonometer flattens a small central portion of the cornea

but records only the force operative on a plunger situated concentrically

within the overall applanln9 surface. As the tonometer contacts the cornea
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the force on the plunger Is continuously recorded on an electronic recorder.

The fol|o_ing sequence of events are the rationale given for the instrument

measuring the intraocu1ar pressure _23_.

i. As the cornea is flattened beyond the pressure sensitive

region, the structural resistance of the cornea is largely

distributed over the applaned area outside the force sensitive

region and the response curve gradually begins to decrease.

2. As the flattening process continues, the loading will become

of a sufficient magnitude (which corresponds to a flattened

perimeter of approximately 1.5 mm. radius) to cause the

lntraocular pressure to begin to rise; at this time the

force curve begins to rise.

3. The magnitude atthis trough (see diagram below) Is a measure of

the intraocular pressure, and the actual value is deduced through

a reference calibration curve simply obtained by turning the tonometer

through 180 degrees so as to measure the gravity load on the total,

force sensitive unit.

Po= intraocular pressure

_= force sensitive area

4. The surface tension of tears is not a factor since the applanlng

end of Instrument is covered by a thin membrane which offers a

negligible error in the measuring process.

In this sectionwe shall analyze these two tonometers. The analytical

results of chapter 1 are combined to the experimental results of chapter 2,

to offer a theoretical basis for both of these Instruments.
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3.4 A. The Goldmann tonomet;e r

The resistance that the Goldmann tonometer measures is composed of:

a) The pressure distribution p (r) between the rigid indenter

and the upper surface of the cornea; designate the associated force

resultant as Pa" If r o is the edge of the applaned area, then

b) The cornea_s resistance in compression to the work done to

initiate the deformation of the bottom surface; designate this

resultant force as Pb"

c) The surface tension of tears imposing a force Pc"

d) The intraocular pressure whose integrated reaction is Pd.

The component Pa which is the representative of the deviation of the

corneal behavior from that of an infinitely thin membrane, is given by equa-

tion (78). And the component Pd is simply the intraocular pressure pc

multiplied by the area of applanation. Before discussing Pa we consider Pb

and Pc"

The force Pb may be estimated from the following considerations. Gold 1

mannls experiments(F2l],figure5 ( ) show that after the outer surface of the

cornea is flattened to circular area whose radius is about 0.2 mm., the

inner surface also begins to deform. The radius of that surface then is nearly

in a 1-1 proportion to that of the applaned area.

We estimate the compressive strain for a total thickness h = 0.6, an applanation

radius r O = 0.2, and corneal radius of 8.0 as

%

±_'. -3
en" Z-_--_ = 4-y,_o

And from the corneal compression test we have estimated (see Section 3.3) the

foundation modulus as 200 mml_g. Therefore the force Pb is derived from a
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resultant pressure in the neighborhood of about 0.8 mmHg.

The force Pc is very difficult to estimate since we must know the con-

tact radius for the tear-cornea-tonometer interface. However, the following

calculation indicates the order of magnitude of the force. With respect to

figure 30 _ let Rt be the radius of the fluid surface, in a plane parallel to

the tonometer, which has spread along the surface of the tonometer. Let r t

be the tear radius at the edge of the wetted area. Then the pressure drop across

the tear surface Is _ZT]

(, ,)
where _ is the surface tension constant of tears. The contact angle, and

hence the radius r t depends, in part, on the spreading distance Rt. Hence

the tonometer surface and anesthetic are factors in the size of r t,

As the tonometer contacts the layer of tears on the cornea, a fluid

layer spreads over part of the tonometer surface. If the radius of curve-

2 2
ture of the cornea is Rc, then if Rt<<R c, it follows that

" / /Pc
and hence

( 87 )

The surface tension constant _k is known to be about. [ ref.14J 59 dynes/=.

So if Rt = 1.7 mm (a reasonable choice for an applanation radius of 1.5 mm) and

Rc = 8.0 ram., then

-- S.SS)C I0 Cmz

Hence the force Pc' at the contact area for Goldmann tonometry (Tl'(I.53)2mm2),

is approximately.415 grams. This resultant is directed along a normal into the

cornea and pulls the tonometer into the eye. Hence it tends to balance the

forces Pa and Pb"
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Our analytical results Indicate that beyond a certain radius, the force

Pa ceases to increase, l.e., a form of elastic Instability manifests (see

section i.7). Now it is important to recall that our analytical solution

assumes no edge restraint, and we expect the solution to break down for some

flattened radius. (Probably beyond i.5 mm. _or a 12 mm. scleral radius, i.e.

the edge of shell about 8 diameters away from the loaded region). Also, since

we specify displacements in the loaded region, the solution applies for any

layer that flattens.

From figuresSI32we see that after the outer layer is flattened beyond

about 0.5 mm. (if its thickness is 0ol or 0.2 mm.), the force Pa no longer

increases° For that radius, the center layer has only flattened to about a radius of

0.3 mm., and the force Pb corresponds to a pressure less than 0.81,Wgo

Experimentally, _21_ , we know that for an applanation radius of 0.5 nn.,

the surface tension force often over balances the structural resistance. And

this is consistent with our analytical results even if the center layer is

0.6 n_. thick (see figure 36 and the estimates for Youngis modulus in section

Therefore, our explanation of the process of Goldmann applanation tono-

merry is as follows:

I. Up to a flattened radius of 0.5 n_. the structural resis-

tance of the cornea is due to its outer layer.

2. Beyond this radius, the resistance in compression and the

structural resistance of the central layer increase to balance

the surface tension force.

3. As flattening Increases, end effects come Into play and the

resistance continues to rise.



This explanation is consistent with Goldmann's observation [21] that

the instrument's accuracy does not depend on the level of intraocular pressure.

If the instrument were calibrated at, say, a 20mm.Hg. intraocular pressure,

and the pressure were raised to 60mm._lg., the cornea would be in a different

state of tension. And if there was no elastic instability in the rigid outer

layer, it is difficult to see how surface tension could balance the structural

resistance independ¢nt of the level of intraocular pressure.

Also, it is known [21] that wrinkles can be seen in DescemetJs mem-

brane during the applanation process; hence we have the experimental observa-

tion that at least Descemet_s membrane goes into an elastically unstable

_vHm i _l_l _1= mvHe

If the outer layer's structural resistance was monotone with an in =

creasing applanation radius, then our results indicate that for a 1.5 mm.

applanation radius, its structural resistance would be much higher than could

be balanced by surface tension. Noreover, in view of its rigidity, it is

difficult to see how the convenient 1.53 mm. applanation radius could be

found., and how this number could be the same for all eyes unless the corneal

resistance was very low beyond a certain applaned region.

Our analysis shows that the Goldmann tonometer has a very weak

dependence on the radius of curvature of the cornea. If the thickness of the

outer layer is nearly the same (say to within 15 percent) for all eyes, then

in view of the low modulus of elasticity of the central layer, the tonometer

is insensitive to variations in the overall corneal thickness of different

human eyes.

3.4 B The I_ckay-I_arq tonomcte_

The corneal resistance that the Nackay=Marg tonometer detects is

the same as that of the Goldmann tonometer until the flattened area exceeds

By 'tinsensltiveJl we mean that the Instrumentms response is changed by

|ess than ten per cent,
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that of the force sensitive region. Let r o be the radius of the flattened

area and r_ the radius of the central, force sensitive plunger. Then the

force measured by the Nackay-Harg tonometer is composed of the following

factors:

a) The pressure distribution p(r) (between the rigid, applaning

surface and the upper surface of the cornea) integrated over
2

the area_T' p_ . Let this component of the resultant force

be PI (ro;r_)"

b) The cornea's resistance in compression until the bottom

surface begins to deform; designate the force as P2 (ro)

0 I ....... = .....

P3 (r*) = PoI_ rw2.

d) The degree of co-planarity of the central plunger and the

remainder of the tonometer's surface. Let the plungerls extension

or insertion relative to a point on its surface, outside the

force sensitive area be e. And let Pe (ro;r .) be the measured

force arising from the deviation from co-planarity.

(*)
The force PI (ro;rw) is given by

R(ro r.)= Irp(r  r , p ro r, (88)
O

The pressure distribution p (r) is given by equation (72) of Chapter 1, and

if we perform the above integration we have -

(_) The expressions assume pressure sensitivity over a central area. If this

area is disjoint from the outer applaning surface, then the membrane forces in

(72) are not measured for ro > r_.
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Z ,5_ ;S)v'.I6 " I-t-_ ' ;
r <r. ( 90 )

where A! (ro, 8) and 8 (ro) are given by (69d) and (76) respectively. The

resultant force P2 is identical to Pb for the Goldmann tonometer, and the

factor Pe can be estimated. Analytically it would be very difficult to in-

clude the effect of a non-zero e, for if the plunger and surrounding

tonometric surface are not in plane, than we cannot cunL;,,uuu=,_ _e.... ,

the cornea's displacement in the region of contact. However, from our corneal

compression experiments we may arrive at an upper bound for the case of an

extended plunger, while it is obvious that if the plunger is recessed

the observed reading may (if the cornea did not completely conform to the

plunge r ) be low.

If the plunger is extended, then as ro increases beyond rw, the pre-

ssure distribution p (r) depends on the extension e. But we assume that

beyond some ro greater than %_say r o, the cornea once again conforms to

the tonometer surface. Then if e is much smaller than the center deflection

in the co-planar case, we estimate the deviation of p (r) from equation (72)

as an additional pressure due to corneal compression. The center deflection

8 (r o) is greater than that of a membrane of the same radius and hence 8 (r o)

_7_" For r o = 1, and R = 8 n_n., 8 (ro) _ 6.25 x 10-2 mm.

The actual pre-set plunger extensions that may be operative in the

(.)
clinical use of the Hackay-Harg tonometer are about 5 x 10-3 mm. and the

(*) If e were initially set, then during applanation of the tonometer e would
decrease, and the compressive strain would be induced by a deformation less
than e. The actual amount depends on the limpness of the plunger sulpension.
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force P may reasonably be estimated as outlined above for e up to, say
e

10 x 10 -3 mm. From the corneal compression experiment (figureZl) we have

estimated the foundation Young's modulus as about 200mm.ltg, And the local

compressive strain in a 0.5 ram. thick cornea deformed 10 x !0 -3 mm, is approxi-

mately -Z

-2

so that for • = I0 m m.

d-zz - 4mm.  .

If e = 2 x lO "3 ram.,

_'t= " 0-8 mm._c_.

These values are upper bounds and are very reasonable bounds for the

experimental values obtained on rabbit eyes by Mackay, M=r3 and Oechsli _31].

If the tonometer was constructed with a very stiff suspension, and

a very small protrusion, say e = 5 x 10"4 mm., then the factor P would always
e

cause a high reading in excess of the intraocular pressure by no more than one

or two percent.

Now consider the force Pi (ro;r_)° It is known that the effect of

transverse shear deformation is important for thick shells. If this effect

were negligible for the eye, then from the classical theory of thin, shallow

spherical shells,J4] , the pressure distribution is

P(r_ D9 4 (92)

where w is the normal displacement and Nrr, Nee are the membrane resultants.

But for small flattening w =_-_ =//R _ where 5 is the center displacement,

and _4W= O. Hence

T N,,*N,,)r r.
o

And for r 0 > r_, the membrane resultants are held out by the ring (the

central plunger and the guard ring are separate mechanical parts) so that
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PI (ro >_ r , r ) = O, as indicated in the sketch below.

r.-_

r.

The predig_;ion Of qlassi_ai shell theory

In figure 37 we have plotted Pl(ro;r_-.75) for corneal thicknesses of 0.#

and 0.5 mm. and several values of the corneal radius. Pl(r ;r ) = 0 before ro=2r .0

Hence the Hackay-Harg tonometer fulfills the requirement that P1(ro=2r ;r )=0 fore

r_ = .75.

During the applainlng procedure, the pressure distribution between the surface

of the tonometer and the cornea is continuously altered, and we note that our

theoretical prediction of instability does not necessarily imply the occurrence of

any sudden structural changes. (The experiments of Hackay, et. al._2_ indicate that

snap through buckling does not occur).

We do predict that as flattening increases beyond some value of r , say 7-,
O O

the integrated pressure distribution is no longer monotone. And unless r° _ ro,

then whatever the value of r_, Pl(ro;r ) # O. For the above example, while

PI (ro2re'r-_--'75) = O, PI (ro= 2r_r.--.5) # O. And it is by a sufficiently large

choice of r e (if the degree of flattening r is to be approximately 2r at theO

time that the instrument indicates the pressure) that the Hackay-Ptarg tonometer

takes advantage of the elastic instability occurring during the applanation procedure.

The magnitude of the force Pe depends on the stiffness of the plunger

suspension and the initial deflection e. The error due to P is dependent on the
e

technical quallty of the instrument and does not enter in a fundamental way,

P2(ro) overestimates the pressure by less than 0.8 mm.Hg. (The second dip, during

unloading in Hackay-Harg tonometry is often lower than the initial dip which
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Indicates the intraocular pressure. One reason for this Is that during

Ioadlng there Is some stress relaxation of the force P2(ro)| outflow is another.

The only theoretical limitation of the Hackay-Harg tonometer is the force

P2(r ) which causes an overestimate of the intraocular pressure. If the plunger0

extension was less than 2 x I0"3mm., then the Instrument's response is always

an upper bound for the pressure, and for a normal pressure of 16.0 mm.tttl. It

ylelds an error of less than 10%. As the intraocular pressure Increases, the

relative error decreases.

3.4C Summary of the Goiclmann afldttackav-Marq [Qllgmeters

The practical Ilmltations of the Goldmann tonometer appear to be more

severe than for the Flackay-I_rg tonomter. A 10 percent error in estimating

the radius of the epplanatlon area yields nearly a 20% error for the measured

pressure. Hence the skill of the opthaimologist during Golclmann applanation

tonoaetry is an Important factor. Also, the surface tension force has a strong

dependence on factors such as the condition of the surface of the tonometer

and the amount of fluid on the cornea before it is applaned. Either of the

factors: accuracy In judging the applanation area or a variability In the

surface tension could cause a high or a low reading.

The Hackay-Harg tonometer:s accuracy basically depends on the stiffness

and protrusion of the central plunger, if this factor is controlled (e.g.

employing a small, (e _ 2 x 10"3m.) positive protrusion and a stiff suspeasion,

then the Instrument ,ill always yleld an upper bound for the actual pressure,

measuring accurately to within 10 percent of the pressure. We note that due

to its weak dependence on YoungSs modulus, the Hackay-Harg tonometer should

yield good accuracy when applied on the sclera, which has a higher rigidity

than the cornea.
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3.5 Indentation Tongmeters

In this section we shall discuss the Schlitz _onometer as representative

of instruments that indent the cornea under a constant force (_). The instan-

taneous, elastic response is measured in tonometry and during tonography the

time dependent response is measured for about four minutes. In

contrast to applanation tonometers, indentation tonometers, weighing 16.5 grams

in a typical clinical application, induce a rise in the intraocular pressure ,

and the magnitude of this induced pressure rise plays an important role in the

theory of the Schi_tz tonometer. During tonography, the fluid outflow is

altered and the induced pressure rise depends on the loading, geometry, material

properties and the change In the rate of fluid outflow. Figure (38) illus-

trates a portion of the cornea under a Sdh_tz lx_nometer.

The deformation of the cornea probably exceeds I/3 its thickness and hence

the elastic solution is beyond the scope of the geometrically linear theory

(small displacements as well as infinitesimal strains) of thin elastic shells.

But we are not so concerned with predicting the magnitude of the elastic response

as we are with its functional dependence on the intraocular pressure and the

material properties of the cornea. And we have shown that for a fixed intra-

ocular pressure the cornea conforms to the requirements of the Boltzmann

superposition principle. Thus a correct elastic solution in conjunction

with the correspondence principle of linear viscoelasticity would yield the

time dependent solution (The level of strain in the cornea during the appli-

cation of a Schi_tz tonometer with a 5.5 gram plunger load is probably less than

5 per cent.)

(_) The cornea is loaded by two concentric cylinders. The curvature and load
of the central cylinder, the plunger, is such that its total surface contacts
the cornea; the total surface of the outer cylinderD the foot-plateD does not
contact the cornea. The applied pressure of the plunger is greater than that of
the foot-plate and the plunger deformation relative to the foot-plate is measured.
The problem is a combined fixed (the plunger contact radius) and free (footplate
contact radius) boundary value problem. (see p.71,72,below)



We shall regard the elastic result obtained from the equations governing

the linear theory of thin, shallow, elastic shells as a first approximation for

the functional dependence of the center displacement on the intraocular pressure pe _

corneal geometry, and material properties. And we consider the corresponding

viscoelastic result as a first approximation for the time dependent change in

the deformation relative to the initialp elastic response.

Consider a homogeneous, linear viscoelastic shell, symmetrically loaded

over a small circular area whose center is the apex and simultaneously under an

inplane tensile force T: _ We assume no edge restraint; it is known that

the center displacement of a shallow shell segment loaded over a small area at

its apex with this edge condition closely approximates the center displacement

of a complete spherical shell under the same loading.

The shape of the cornea under the internal pressure Pe is changed by a

constant factor under the load _o_p • Hence the initial shape,_ef. I0]

is not a factor and the governing equations are related to (20,21) by adding

an inplane tensile force as in plate theory.

4
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(20')

= (21')
tTVd

We only require the center displacement which is easily obtained from

the Greens function for the problem. Equations (20_21') are solved with the

procedure and boundary conditions of section 1.5.

The solution for the point load w6 is

(93)



r = distance from the apex measured in a horizontal reference plane

r [ e/_.
i_=-- e

h = shell thickness

R = shell radius

= Poisson's ratio

E = Youngls modulus

P = magnitude of the point load

But now

where

I I;g;? -_

The displacement at the apex is

(94)

(95)

The center displacement for the shell loaded by a uniformly distributed

pressure'S'over a small central area ql_rp _ is

0

where -P:T/-_¢ •

(98)

Integrating (97) with w6from (93) yields

f r,.J) nE_' z _r
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R
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Since r is a constant, the center displacement in the time dependent prob-
P

iem is given by the correspondence principle of quasi-static linear visco-

elasticity. Let Poisson's ratio _:o.5 _ _o in the quasi-static problem.

We designate the solution (98) by

(98')

where H is the unit step function.

Let the Laplace transform of some function _(t) be denoted by

o

(99)

Then from the correspondence theorem, the Laplace transform of w (t) is

.S ) ) )

where "E (s) = [S_Is)] -I , with the creep function

(loo)

"_j'(t) defined by

equation 80 and "_e(s) is the transform of the time varying intraocular

pressure. The solution W (t) is the inverse Laplace transform of _ (s), but

occurs in the argument of the Hankel function H_ i) and the inversion ofE (s)

W (s) would be extremely difficult. (If there were no in-plane tension the

inversionwould be trivial).

But there is a technique known as the "reduced modulus method' that is very

simple to employ and is exact for the instantaneous response and for the assymp-

as t 400 _28]. And since the cornea behaves as a semi-relax-totic solutions

ing solid, well over ninety percent of the creep response occuring in the first
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two minutes, the method should be nearly exact at the end of four minutes,

the normal time elapsed during Schi_tz tonography.

Suppose that we were to perform a uniaxial tension test on a strip of

cornea. Let the tensile stress be some constant va]ue F, and the strain response

be e(t).

Ht_)

Then the creep function_(_)=e_)
F

, and w(t) is derived from w(O), equation 98':

(lOl)

Or, explicitly from equation 98

(io2)

where

= Zl£'- (lo3)

'l 'to- sO-Oo)
(1o4)
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w(4 minutes)
For the two human eyes (same person) tested (figures 9,10), W(O) = °33

w(4)=.s3,
and 0.33 respectively, and for the hog eyes (figures 11,12, 13 )

.44, and .39 respectively. Creep, for the human eyes, would account for a

30 percent increase in the measured Schlitz deformation at constant internal

pressure.

Before discussing the solution we relate the pressure po ÷ _L_

to the fluid flow out of the anterior chamber and into the canal of Schlemm.

The flow problem is very complex and it serves no useful purpose to attempt to

characterize it more accurately than the present approach taken by opthalmolo-

gists,_291. It is basically a low Reynold=s number porous media flow, and

often (see article by Scheidegger,[30]) a linear relationship exists between

the pressure drop and the flow rate. Since the porosity of the media (the

trabecular meshwork) has not been measured, to say nothing of its possible

dependence on the level of the intraocular pressure at any instant, it is best

to characterize the flow problem in terms of pressure gradiants across certain

"res i stances".

Let the flow rate out of the anterior chamber be Qa and the in-flow rate

be qp. Let the pressure drop out of the anterior chamber be _PA.c. and

the pressure gradiant allowing the fluid to flow from the posterior chamber be

Z_l)p.c. . Define resistance coefficients _ and B by

Qa = !AP=.c (105)

Then in steady flow, Qa = Qp so that

(I06)
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oL

(107)

And we can distinguish several cases relative to normal values _N' BN"

a) B = BN ' _ >:>_N ... open angle glaucoma

b) B_< BN , c_=_ N ... perhaps a form of hypersecretion glaucoma

The pressure drop _P_c is the difference between the venous pressure P
v

and the anterior chamber pressure Pt" Therefore

Pt = Pv + _ Qa

and equation (104) becomes

The initial measured response of the Shi_tz tonometer is the relative

deformation of the plunger and the guard ring. Therefore the initial reading

has a more complex parametric representation than (98) including the weight of

the foot plate, and the radiuspf with which the foot plate contacts

the cornea. The radius pf itself depends on the load) internal pressure and

the material behavior. So the elastic solution (98) basically shows us the least

complex way that th_ level of intraocular pressure affects the measured response.

We see that the level of pressure, creep and geometry enter non-linearly, and

a small change in these variables would not yield a proportional change in de-

formation. Hence it is not difficult to understand how the Schi_tz _onometer

can be quite sensitive to |ntraocular pressure changes.

The sensitivity is illustrated by the behavior of the Greens function

(93) at the apex. There is a strong dependence on the magnitude of P/E, the
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sensitivity to pressure changes being greater for smaller Youngms modulus.

(See the experimental results, figures 16-20). In a certain range of the value

P/E, the instrument may be quite sensitive to the value of R/h.

Now the correspondence principle of linear viscoelasticity only applies

If the boundary conditions In the elastic and viscoelastic problems are the

same. But during tonography, the area of contact between the footplate and

the cornea changes and our solution indicates an over simplification of the

relative change in time between the footplate and the plunger.

The solution (102) shows that the change in the measured response of the

Schlitz tonometer may have a basic dependence on two quantities: the creep

functionV(t) and an expression that we denote by_t(t).

floql

Horeover, we see that the material properties, (represented by the creep

function_(P) and the level of intraocular pressure (or the fluid outflow) are

linked by the parameter/b((t). And a possible inference from this parametric

dependence is illustrated by the following situation. Suppose Schlitz

tonography were performed on the eyes of two people, and the resulting tonograms

were different. Then the difference could be due to not only their respective

outflow resistances, but to a difference in their creep functions.
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